Metabolismo de lípidos y su relación con enfermedades cardiovasculares desde un enfoque bioquímico y genético

Myriam Lizeth Morales Pilataxi, Angélica Victoria Herrera Martínez, Diego Eduardo Guato Canchinia, Cristian Javier Calle Cárdenas

Resumen


Las enfermedades cardiovasculares constituyen una preocupación de salud global, por ser una de las principales causas de morbilidad y mortalidad. Los antecedentes en las enfermedades cardiovasculares revelan la importancia de comprender los mecanismos moleculares subyacentes, dada su alta prevalencia y repercusiones en la salud pública. Resulta necesario comprender la relación entre el metabolismo de los lípidos y estas enfermedades desde una perspectiva bioquímica y genética; los aspectos bioquímicos, son importantes para el desarrollo de enfoques terapéuticos más precisos y estrategias de prevención. El objetivo de la investigación fue describir la relación entre el metabolismo de los lípidos y las enfermedades cardiovasculares desde un enfoque bioquímico y genético. La búsqueda de información se realizó en las bases de datos PubMed y ScienceDirect con el empleo de los operadores booleanos AND y OR, para idioma inglés y español. Se obtuvieron un total de 30 referencias bibliográficas. Los resultados revelaron la influencia del metabolismo de los lípidos en el control o desarrollo de enfermedades cardiovasculares. El control de diversos elementos fundamentales tanto en el metabolismo de los lípidos como en el transporte ha demostrado efectividad en la reducción de dichas enfermedades.

Palabras clave


metabolismo de los lípidos; movilización de lípidos; enfermedades cardiovasculares; arterioesclerosis; expresión génica

Texto completo:

HTML PDF

Referencias


- Han W, Yang S, Xiao H, Wang M, Ye J, Cao L, et al. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int J Mol Sci. 2022;23(24):15627.

- Bafei SE, Zhao X, Chen C, Sun J, Zhuang Q, Lu X, et al. Interactive effect of increased high sensitive C-reactive protein and dyslipidemia on cardiovascular diseases: a 12-year prospective cohort study. Lipids Health Dis. 2023;22 (95):2-11.

- Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res. 2023;48(10):105-23.

- Li YE, Sowers JR, Hetz C, Ren J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis. 2022;13(5):504.

- Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: emerging regulators of lipotoxicity. Mol Cell. 2021;81(18):3708-30.

- Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener. 2022;17(40):1-3.

- Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, et al. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients. 2020;12(5):1299.

- Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y. The role of RNA m6A methylation in lipid metabolism. Front Endocrinol (Lausanne). 2022;13(7):866116.

- Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci. 2021;22(13):6711.

- Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci. 2022;9(23):909151.

- Meng Q, Ma M, Zhang W, Bi Y, Cheng P, Yu X, et al. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut Microbes. 2021;13(1):1-27.

- Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022;97(5):1844-67.

- Lazarenko V, Churilin M, Azarova I, Klyosova E, Bykanova M, Ob’edkova N, et al. Comprehensive Statistical and Bioinformatics Analysis in the Deciphering of Putative Mechanisms by Which Lipid-Associated GWAS Loci Contribute to Coronary Artery Disease. Biomedicines. 2022;10(2):259.

- Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, Duong T, et al. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. Nat Commun. 2022;13(1):3124.

- Cohain AT, Barrington WT, Jordan DM, Beckmann ND, Argmann CA, Houten SM, et al. An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nat Commun. 2021;12(1):547.

- Liao Y, Dong Z, Liao H, Chen Y, Hu L, Yu Z, et al. Lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients: an integrated bioinformatic analysis. Lipids Health Dis. 2022;21(1):87.

- Shi H, Guo J, Yu Q, Hou X, Liu L, Gao M, et al. CRISPR/Cas9 based blockade of IL-10 signaling impairs lipid and tissue homeostasis to accelerate atherosclerosis. Front Immunol. 2022;13(6):999470.

- Dabravolski SA, Khotina VA, Omelchenko AV, Kalmykov VA, Orekhov AN. The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci. 2022;23(2):931.

- Butnariu LI, Florea L, Badescu MC, Țarcă E, Costache II, Gorduza EV, et al. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? Life. 2022;12(6):865.

- Skals R, Krogager ML, Appel EVR, Schnurr TM, Have CT, Gislason G, et al. Insulin resistance genetic risk score and burden of coronary artery disease in patients referred for coronary angiography. PLoS One. 2021;16(6):e0252855.

- Dai W, Zhang Z, Yao C, Zhao S. Emerging evidences for the opposite role of apolipoprotein C3 and apolipoprotein A5 in lipid metabolism and coronary artery disease. Lipids Health Dis. 2019;18(1):220.

- Zhao Z, Lian H, Liu Y, Sun L, Zhang Y. Application of systemic inflammation indices and lipid metabolism-related factors in coronary artery disease. Coron Artery Dis. 2023;34(5):306-13.

- Zhu Q, Wu Y, Mai J, Guo G, Meng J, Fang X, et al. Comprehensive Metabolic Profiling of Inflammation Indicated Key Roles of Glycerophospholipid and Arginine Metabolism in Coronary Artery Disease. Front Immunol. 2022;13(2):829425.

- Chen H, Wang Z, Qin M, Zhang B, Lin L, Ma Q, et al. Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Front Mol Biosci. 2021;8(4):632950.

- Malekmohammad K, Bezsonov EE, Rafieian M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med. 2021;8(707529):1-16.


Enlaces refback

  • No hay ningún enlace refback.


FINLAY EN: google_acadmico_75 doaj_75 bvs_75 latindex_75medigraphy_75

FINLAY CERTIFICADA POR:

certificacin_citma_75

 Esta revista "no aplica" cargos por publicación en ninguna etapa del proceso editorial.

Facebook Twitter

Equipo Editorial

 

Dirección postal: Calle 51A y Avenida 5 de Septiembre Cienfuegos, Cuba Código postal: 55100.
http://www.revfinlay.sld.cu
Telefono: +53 43 516602. Telefax: +53 43 517733.
amgiraldoni@infomed.sld.cu
ISSN: 2221-2434
RNPS: 5129